
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2007-01-12

System for Collision Detection Between
Deformable Models Built on Axis Aligned
Bounding Boxes and GPU Based Culling
David Owen Tuft
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Tuft, David Owen, "System for Collision Detection Between Deformable Models Built on Axis Aligned Bounding Boxes and GPU
Based Culling" (2007). All Theses and Dissertations. 1120.
https://scholarsarchive.byu.edu/etd/1120

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1120?utm_source=scholarsarchive.byu.edu%2Fetd%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

A SYSTEM FOR COLLISION DETECTION BETWEEN

DEFORMABLE MODELS BUILT ON AXIS ALIGNED

BOUNDING BOXES AND GPU BASED CULLING

by

David O. Tuft

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

April 2007

www.manaraa.com

Copyright c© 2007 David O. Tuft

All Rights Reserved

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

David O. Tuft

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Parris K. Egbert, Chair

Date Bryan S. Morse

Date Eric G. Mercer

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of David O. Tuft
in its final form and have found that (1) its format, citations, and bibliographical style
are consistent and acceptable and fulfill university and department style requirements;
(2) its illustrative materials including figures, tables, and charts are in place; and
(3) the final manuscript is satisfactory to the graduate committee and is ready for
submission to the university library.

Date Parris K. Egbert
Chair, Graduate Committee

Accepted for the Department

Parris K. Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean,
College of Physical and Mathematical Sciences

www.manaraa.com

ABSTRACT

A SYSTEM FOR COLLISION DETECTION BETWEEN

DEFORMABLE MODELS BUILT ON AXIS ALIGNED

BOUNDING BOXES AND GPU BASED CULLING

David O. Tuft

Department of Computer Science

Master of Science

Collision detection between deforming models is a difficult problem for collision

detection systems to handle. This problem is even more difficult when deformations

are unconstrained, objects are in close proximity to one another, and when the entity

count is high. We propose a method to perform collision detection between multi-

ple deforming objects with unconstrained deformations that will give good results

in close proximities. Currently no systems exist that achieve good performance on

both unconstrained triangle level deformations and deformations that preserve edge

connectivity.

We propose a new system built as a combination of Graphics Processing Unit

(GPU) based culling and Axis Aligned Bounding Box (AABB) based culling. Tech-

niques for performing hierarchy-less GPU-based culling are given. We then discuss

how and when to switch between GPU-based culling and AABB based techniques.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank Parris Egbert for his advice, encouragement, and support

as I finished my thesis long distance in North Carolina. I would also like to thank my

committee for working with me.

I would also like to thank my dear parents and wife for support and encour-

agement.

www.manaraa.com

Contents

Acknowledgments vi

List of Tables ix

List of Figures xii

1 Introduction 1

1.1 Axis-Aligned Bounding Boxes . 2

1.2 GPU Based Culling . 2

1.3 Summary of Contributions . 3

1.4 Thesis Organization . 4

2 Related Work 5

2.1 Collision Detection . 5

2.2 Rigid Body Collision Detection . 6

2.3 Bounding Volumes and Hierarchies 8

2.4 Deformable Models . 8

3 Background and Problem Analysis 11

3.1 Axis-Aligned Bounding Boxes . 11

3.2 GPU-Based Culling . 12

3.2.1 GPU Features . 13

3.2.2 GPU-Based Culling Algorithm 15

3.3 Analysis . 18

3.3.1 Geometric Coherency . 19

3.3.2 Geometric Proximity . 21

vii

www.manaraa.com

3.3.3 Deformable Model Collision Detection Bottlenecks 22

4 The Combined AABB and GPU Culling System 25

4.1 Overview . 25

4.2 GPU-based culling . 25

4.2.1 Determining The Proper View Configurations 26

4.2.2 Object Sort . 30

4.2.3 Triangles Per Query Determination 32

4.3 A Framework built on GPU and AABB Culling 34

4.3.1 Framework Analysis . 36

4.4 Deciding Which Culling to Use . 39

4.4.1 Mode 1 . 40

4.4.2 Mode 2 . 41

4.4.3 System . 41

5 Results 43

5.1 Hierarchy-Less Collision Detection . 43

5.1.1 Object Sort . 44

5.1.2 View Configurations . 44

5.1.3 Triangles Per Occlusion Query 44

5.1.4 Final Results . 45

5.2 Combined GPU and AABB System 45

5.2.1 Data Set Results . 46

6 Conclusions 57

Bibliography 61

viii

www.manaraa.com

List of Tables

3.1 AABB Hierarchy Bottlenecks . 22

4.1 Triangles per Occlusion Query Variables 34

4.2 AABB and GPU Cull Framework . 36

4.3 Collision Detection Times . 37

4.4 Decision System Variables . 39

4.5 Decision System Functions . 39

ix

www.manaraa.com

x

www.manaraa.com

List of Figures

2.1 Worst-case Triangle Test . 5

2.2 Simple Hierarchy . 6

2.3 Sweep and Prune . 7

2.4 BART Ray Tracing Benchmark . 10

3.1 AABBs Edge Connectivity . 12

3.2 AABBs No Edge Connectivity . 13

3.3 AABB Overlap . 14

3.4 Simplified GPU-Pipeline . 15

3.5 Depth Buffer . 16

3.6 Occlusion Query . 17

3.7 Depth Complexity . 18

3.8 Collision Detection Coherency . 19

3.9 Random Triangle Movement . 20

3.10 Two Objects . 21

3.11 Collision Detection Proximity . 22

4.1 Two Bunnies Colliding . 26

4.2 Time For Different View Configurations 27

4.3 Two Sheets in Close Proximity . 28

4.4 Time For Different View Configurations. 29

4.5 Effect of Sorting Objects before the GPU Cull 31

4.6 Times to Perform Occlusion Queries 32

4.7 AABB GPU-Cull Framework . 35

4.8 Triangle Intersections Needed . 38

5.1 Visualization of Data Sets . 48

xi

www.manaraa.com

5.2 Results for Sorting Objects . 49

5.3 View Configuration Results . 50

5.4 Results of Triangles Per Occlusion Query 51

5.5 Final Hierarchy-less Results . 52

5.6 Results for Data Set A, Two Bunnies 53

5.7 Results for Data Set B, Two Waving Sheets 53

5.8 Results for Data Set C, Sin Wave Sheets 54

5.9 Results for Data Set D, BART Animation 54

5.10 Results for Data Set E, Exploding dragons, Over 25 Frames 55

5.11 Results for Data Set E, Exploding dragons, Over 50 Frames 55

5.12 Results for Data Set E, Exploding dragons, Over 100 Frames 56

5.13 Results for Data Set E, Exploding dragons, Over 200 Frames 56

xii

www.manaraa.com

Chapter 1

Introduction

Collision detection is the algorithmic process of determining if two solids inter-

sect. Collision detection adds realism to simulations, interactive games, and movies.

The most difficult types of collision detections are those in which the objects are in

close proximity to one another and those in which the objects are deformable. De-

forming models are extremely important in the simulation and animation industry.

Film and animation companies have begun integrating more complicated simulations

of fluids and other materials into scenes. Collision detection is an essential part of

any realistic simulation. If an animated car crashes into a building, the simulation to

bend and tear the frame of the car is dependant upon where the deforming pieces of

the car collide.

Collision detection is a well-studied problem with most methods using hier-

archical representations and bounding primitives to reduce the complexity of the

intersection tests. However, current systems do not work well on all types of collision

detection. Many of them are geared towards special cases and do not attempt to han-

dle all types of deformable models. To solve this problem, we approach deformable

model collision detection in terms of Axis-Aligned Bounding Boxes (AABB)s and

Graphics Processing Unit (GPU) based culling. We combine AABBs and a GPU

based Culling technique in order to perform collision detection on a wide array of

model types, ranging from rigid bodies to simulations that require hierarchy-less col-

lision detection.

1

www.manaraa.com

1.1 Axis-Aligned Bounding Boxes

AABBs are a simple and elegant approach to collision detection and have been

in use for a long time. Fast AABB updates are a powerful approach to deformable

model collision detection [1]. However, there are two setbacks to the AABB approach.

First, AABBs do not bound primitives tightly. This can result in extra primitive-

primitive intersections. Second, AABB updates can cause the AABB hierarchy to

become inefficient. Our system uses GPU culling in conjunction with AABBs in

order to compensate for weaknesses inherent in each system.

1.2 GPU Based Culling

A key part of modern collision detection systems is culling, which is the act

of pruning the set of objects that must be tested for collisions. Spatial bounding and

partitioning schemes such as grids, bounding volume hierarchies, and space partition-

ing trees can be used for culling objects. Successful culling schemes reduce the overall

time required for collision detection systems.

GPU-based culling techniques are an alternative approach to hierarchy-based

collision-detection techniques. GPU-based culling techniques such as Cullide [2] ren-

der objects using occlusion queries and trivially cull objects that are determined not

to intersect. By using the occlusion query capability of the GPU in this fashion, some

of the non-colliding objects in close proximity to one another can be quickly culled

from the collision detection set. This approach has many shortcomings. Rendering

visibility queries has a high overhead. Also, the amount of visibility query throughput

on modern graphics cards has not increased while the amount of geometry possible to

render per query has gone up. This makes a naive implementation of one occlusion

query per triangle inefficient. GPU culling is also very sensitive to views from which

the objects are rendered. Using a view with high depth complexity will dramatically

decrease the system’s efficiency. Moreover, the order of rendering makes a difference

in the effectiveness of the GPU cull. Since it is impractical to require the end user to

specify the order in which geometry is rendered, GPU culling can perform well below

optimal, based on these variables.

2

www.manaraa.com

1.3 Summary of Contributions

This thesis approaches deformable model collision detection with AABB-based

culling and GPU-based culling. We present algorithms and metrics for determining

an optimal GPU cull. This improved GPU cull is used for hierarchy-less collision

detection and for cases where AABB-based culling breaks down. Our analysis shows

that AABBs have difficulties in two major areas:

1. AABBs can become become primitive intersection bound.

2. AABBs can become AABB intersection bound.

The vast majority of collision detection systems use triangles as the basic

primitive. Fast triangle-triangle intersection code has been made available [3]. In

many cases the triangle-triangle intersections are very fast. However, when many

triangles are in close proximity, the triangle-triangle tests can become a bottleneck

as AABBs do not tightly bound triangles.

Unconstrained triangle deformations are another major issue for AABB-based

techniques and cause AABBs to become AABB intersection bound. Most AABB-

based techniques require hierarchies to be rebuilt, or constrain the geometry to pre-

serve edge connectivity.

While GPU based culling techniques are the best hierarchy-less collision de-

tection techniques, there are other overhead issues associated with them.

1. The view direction from which objects are rendered affects cull efficiency.

2. The order in which primitives are rendered affects cull efficiency.

3. GPU culling does not always cull sufficiently to justify the cost.

4. Visibility hardware is geared towards multiple triangles per query.

This thesis has four main contributions. The first contribution consists of

three mechanisms which make GPU-based culling more efficient. Mechanisms are

provided for picking optimal view directions, sorting objects to give better culling,

3

www.manaraa.com

and determining the number of triangles to render per visibility query. The second

contribution is our framework to perform combined GPU-based and AABB-based

culling and the analysis of what limits this technique. The third contribution is our

technique for rebuilding the hierarchy in one thread while performing GPU-based

culling in another thread. The final contribution is our algorithm for performing

collision detection based on timing metrics. Our simulations have shown that this

system performs as well or better than traditional AABB-based collision detection or

GPU-based culling on a wide variety of models.

1.4 Thesis Organization

Chapter 2 lays the ground work by discussing previous work in collision de-

tection. Chapter 3 gives a more detailed background on the specific types of collision

detection that will be used in this thesis. This chapter also gives an analysis of de-

formable model collision detection. The analysis frames the problem of deformable

model collision detection in terms of geometric proximity or lack of geometric co-

herency. Chapter 4 outlines our contribution to GPU based culling as well as our

systems for performing collision detection. Chapter 5 discusses the results, and Chap-

ter 6 provides conclusions.

4

www.manaraa.com

Chapter 2

Related Work

2.1 Collision Detection

Testing a single triangle for collision against a set of triangles is inherently an

O(N) operation where N is the number of triangles in the set. Figure 2.1 represents

a worst-case scenario for collision detection. In this figure all pairwise triangles are

colliding. In this case it is impossible to solve collision detection in less than O(N)

time. In a typical scene, most triangles are not colliding. Collision-detection algo-

rithms leverage off of this to reduce the complexity of collision detection. Figure 2.2

shows a simple hierarchy. In this hierarchy, the number of collision detection tests for

the triangle in blue is reduced from O(N) to O(log N).

Figure 2.1: Worst-case Triangle Test This example represents a worst-case sce-
nario for collision detection. This example is in 2D. In this case all triangles are
colliding.

5

www.manaraa.com

Figure 2.2: Simple Hierarchy Hierarchies reduce the number of intersection tests
required in most cases.

2.2 Rigid Body Collision Detection

Collision detection developed simultaneously with the simulation field. Col-

lision detection is rooted in mathematical science. Mathematic algorithms for de-

termining if two geometric primitives intersect have been around for a long time.

Garcia-Alonso et al. computed collision detection by first computing collisions be-

tween bounding volumes. For those objects whose bounding volumes collided, voxel

grids were tested for collision detection. Finally facets within colliding grids were

checked. In this way they were able to cull collisions [4].

Moller et al. presented a fast triangle to triangle intersection algorithm. This

algorithm has been used in a large number of collision detection systems for the

triangle intersection test [3]. This algorithm is the de facto technique for performing

collision detection between triangles. The code supplied by the authors has been used

as the basic primitive collision detection intersection test in many systems [5, 6].

6

www.manaraa.com

X axis

Y
 a
x
is

Figure 2.3: Sweep and Prune Sweep and prune groups objects along an axis based
on minimum and maximum extents.

I-Collide is a collision detection system for large-scale environments with ob-

jects undergoing rigid body motion [7]. I-Collide introduced some new techniques for

skipping groups of intersection tests. The sweep and prune algorithm is introduced as

a technique that iterates across primitives or objects sorted with respect to minimal

values in an axis direction. The algorithm compares the minimum and maximum ex-

tents along an axis to determine which objects can be pruned from the set of objects

that potentially collide. This algorithm allows for the set of objects that must be

tested against each other to be greatly reduced. Figure 2.3 shows how the minimum

and maximum extents of bounding volumes can be grouped into smaller sets.

Lin et al. describe collision detection for polygonal objects, spline or algebraic

surfaces, CSG models, and deformable bodies. This paper focuses on how the model

representation leads to different types of collision detection [5].

Jimenez et al. split collision detection into four categories based on the lo-

cations and the trajectories of moving objects. Knowing the category in which a

potential collision falls can help in reducing the collision detection costs [8].

7

www.manaraa.com

2.3 Bounding Volumes and Hierarchies

Axis Aligned Bounding Boxes (AABBs) have been commonly used in graph-

ics [9]. AABBs are boxes where the edges of the box are perpendicular to the co-

ordinate axis. AABBs are stored as two points: a minimum and a maximum. In

3D this amounts to 6 floating-point numbers or 24 bytes. Bounding boxes can be

fit around primitives by simply determining the minimum and maximum vertices of

the primitives. A major benefit of AABBs is the trivial overlap tests for detecting

collisions between AABBs. Figure 2.2 represents a hierarchy of AABBs.

AABBs are often used in collision-detection schemes. Van den Bergen de-

scribes a system in which a hierarchy of AABBs is used [10]. This hierarchy is trans-

formed with the geometry for any affine transformation. Transforming the AABB

hierarchy converts the hierarchy to an Object-Oriented Bounding Volume (OOBV),

which may or may not be axis aligned. This eliminates the need to rebuild or update

the hierarchy for affine transformations but increases the complexity of the intersec-

tion tests as OOBV intersections tests are more complicated operations. In the case of

deformations, Van Den Bergen updates the bounding volume from the leaf node up.

This has been shown to be a fast operation on modern CPUs. If the deformations

are minimal, this technique works well. If the deformations are large and the ob-

ject components do not maintain connectivity, this can become much more compute

intensive.

2.4 Deformable Models

Deformable model collision detection complicates the collision detection pro-

cess. Deformable models are those models in which the underlying primitives move

from frame to frame. Deformable models range from models that change very little

during a scene, and are more easily dealt with, to models that under go incoherent

and random transformation at the triangle level.

Because of the movement that triangles can undergo, bounding volumes and

hierarchies become useless without some form of rebuild or update. Most deformable

model collision detection systems constrain the types of deformations an object can

8

www.manaraa.com

experience, and then leverage heavily off of current non-deformable collision detection

work [11, 12, 1]. Figure 2.4 shows an animation that is part of the Benchmark

for Animated Ray Tracing (BART). Key frames 1–6 show triangle movement that

appears random. The type of animation in frames 1–6 is the most difficult type of

animation for collision detection algorithms. Many triangles are colliding. Triangles

are in close proximities and triangles are overlapping. A final complication is that

triangles are moving and deforming. Frames 1-6 of the BART animation require

expensive hierarchy rebuilds or hierarchy-less collision detection.

Frames 7–9 are much simpler cases to deal with. Edge connectivity is pre-

served for the majority of triangles. Because there is high coherency between frames,

and most triangles retain connectivity, hierarchy-based methods often outperform

hierarchy-less methods in examples such as this. The BART benchmark shows that

multiple techniques can be used even during the course of one animation to take

advantage of the type of deformations occurring.

This chapter has discussed the basics of collision detection and given an in-

troduction to rigid bodies and deformable models. Because the main thrust of this

thesis is deformable model collision detection, we next give more details about the

current state of this field. Following that discussion, we will describe the challenges

in deformable-model collision detection, then present our solution to these challenges.

9

www.manaraa.com

Figure 2.4: BART Ray Tracing Benchmark A highly deformable animation from
the BART Ray tracing benchmark.

10

www.manaraa.com

Chapter 3

Background and Problem Analysis

3.1 Axis-Aligned Bounding Boxes

As has been mentioned earlier, AABBs are frequently used in collision detec-

tion and ray tracing. Larsson and Akenine-Moller showed that AABBs can be used

to perform collision detection on deforming models. They first compute an AABB

hierarchy as a binary tree, quadtree, or octree [11]. Their method builds the tree

bottom-up and preserves connectivity. Their algorithm requires that the deforming

bodies preserve edge connectivity. This technique uses a mixture of top-down AABB

updates and bottom-up AABB updates. The tree is updated top-down for the first

N levels. Next, collision detection is performed on the first N levels of all object

hierarchies in the scene. If there are intersections at level N of the tree, the rest of

the tree is updated in a bottom-up fashion to guarantee accuracy. This technique is

able to cull portions of the scene that do not intersect without doing a full bottom-up

update. However, the authors state that this can sometimes be more expensive than

updating the entire hierarchy in a bottom-up fashion.

AABB updates are efficient for many types of deforming models. Figure 3.1

shows a deformation where edge connectivity is preserved. While the new bounding

structure might not be the optimal AABB hierarchy, it is still efficient. Figure 3.2

shows a scenario where AABBs are fit around geometry but the triangles separate.

In this case the updated hierarchy is poor. The case where edge connectivity is lost

is common in any type of deformation involving breaking, tearing, or exploding.

In this case it is better to rebuild the hierarchy which takes O(log N) time

11

www.manaraa.com

Figure 3.1: AABBs Edge Connectivity When edge connectivity is preserved
AABBs are efficient bounding primitives.

rather than use an inefficient hierarchy. However, this is an expensive operation.

Because of the inability to handle highly deformable models, AABBs are not a viable

solution for all types of deforming models.

Another disadvantage of AABBs is that they are less efficient when objects

are in close proximity. This is due to the shape of AABBs, which do not bound

objects as efficiently as other primitives, such as OOBBs. Figure 3.3 shows a case

where the primitives’ bounding boxes intersect but the primitives do not. There are

other techniques that are more efficient at culling triangle - triangle intersections than

AABBs. The next section explains one such technique.

3.2 GPU-Based Culling

GPU-based culling reduces the set of objects that must be tested for collision

detection. This is done by running visibility queries on the graphics card between

individual triangles and the rest of the triangles in the set. These algorithms are

multi-pass. Each pass consists of multiple renders and state changes on the GPU.

12

www.manaraa.com

A.)

B.)

Figure 3.2: AABBs No Edge Connectivity In this example of AABBs without
edge connectivity the AABBs are updated but do not bound efficiently

Because the culling is at the triangle level, the culling is more efficient than AABB-

based culling. The theoretical complexity of GPU-based culling is O(N).

3.2.1 GPU Features

Because of the parallel nature of graphics, GPUs have been progressing at

a rate faster than Moore’s law. While GPUs were not designed with the intent of

performing collision detection, some of the key features of GPUs can be harnessed

to perform collision detection. The GPU is special purpose hardware designed for

rendering objects very quickly. Taking advantage of this special purpose hardware

requires finding algorithms that are similar in nature to the algorithms for which this

special purpose hardware was designed.

Figure 3.4 shows some of the key features of a modern GPU pipeline. At the

13

www.manaraa.com

Figure 3.3: AABB Overlap Many times AABBs collide when the primitives they
bound do not

top of the figure are the vertex processors. These processors are Multiple Instruction

Multiple Data (MIMD) units and operate on the data associated with each vertex.

The rasterization engine breaks the data up into fragments. A fragment is a general-

ization of a pixel. Pixels denote one dot on a screen. A fragment can be an element

in a color buffer, a texel in a texture map, or a depth value in a depth buffer. The

fragments are then fed into the fragment processors. These processors operate on all

the data associated with a fragment. The depth and color information is passed to

the fixed function Raster Operators (ROPs). The ROP units perform fixed function

operations between the fragments and the depth buffer. Figure 3.5 represents the

depth buffer. This 2D array of values is used in Z-Buffer rendering to determine the

pixels nearest the viewer. Each pixel in the grid has a 24-bit value associated with

it. This 24 bit value is scaled between 0 and 1. The objects nearest to the viewer are

represented by 0. the objects farthest from the viewer are represented by 1. Incoming

fragments are compared against the depth buffer. If they pass the depth test, the

depth buffer and color buffer are overwritten.

The ROP units compare the fragments of individual triangles against the depth

buffer to determine visibility. The ROP units are very specialized and highly efficient.

These units are able to compare a great number of incoming pixels against the depth

buffer. This is a vital part of Z-buffer rendering.

Another option available on graphics cards is the occlusion query. Figure 3.6

14

www.manaraa.com

…
24 Fragment Processors

2 Shader Units Each

43.2 Giga-

Comparisons /

Second

Fragment

Processor

Fragment

Processor

Vertex

Processor

Vertex

Processor
…

ROP

Unit

ROP

Unit

ROP

Unit

ROP

Unit

Video Memory

40 Giga Bytes / Second Write

L2 Texture Cache

6 Vertex Processors

Fragment

Processor

Fragment

Processor

Rasterizer

Figure 3.4: Simplified GPU-Pipeline In this abstraction of a GPU-pipeline, the
Vertex Processors transform triangles which are then rasterized into fragments. Frag-
ments are shaded and fed into the ROP units. Each ROP unit performs fixed function
updates to the depth, stencil, and color buffers.

shows a buffer with a triangle rasterized into it. Algorithm 1 shows the code for

rendering with occlusion queries. When the code in Algorithm 1 is run, Figure 3.6 is

generated and 15 pixels are returned from the occlusion query.

3.2.2 GPU-Based Culling Algorithm

With the advent of programmable graphics hardware many techniques have

been developed that entail rendering objects to the depth buffer and then using the

information in the depth buffer or color buffer to do screen space analysis of the scene.

Govindaraju et al. were the first to propose using the GPU to cull objects that did

not collide [2]. Their system, known as Cullide, makes use of the depth buffer but

15

www.manaraa.com

24 bit value where

0 = 0 and 1 = 224

Figure 3.5: Depth Buffer The depth buffer is 2D array of 24 bit values representing
the values between 0 and 1.

does not require an expensive depth buffer read. Cullide operates at the triangle level,

and does not require a hierarchy. It has been shown to be useful on both objects in

close proximity one to another and on deforming models [2].

GPU-Based culling renders objects to a depth buffer in any order and then

renders the same objects in the opposite order. GPU-Based Culling relies on hardware

occlusion queries to determine if pixels were rasterized. When no pixels are rasterized

for a particular object in both passes, that object can safely be removed from the list

of potentially colliding objects. The end result is a much smaller set of objects on

which to perform collision detection.

A high level overview of GPU culling is as follows. Two flags are stored for

each object. These flags are: First pass Fully Visible (FFV) and Second pass Fully

Visible (SFV). The two flags are initialized to false. The culling is done by using a

multi-pass approach consisting of two renders per object per pass. The first render

is used to check the object against the depth buffer. The second render renders the

16

www.manaraa.com

Figure 3.6: Occlusion Query An occlusion query returns the number of pixels ras-
terized to the screen. The occlusion query for the triangle returns the number 15.

Algorithm 1 Occlusion Query Code

glBeginOcclusionQueryNV(occ queries[0]); // (1) Begin Occlusion Query
glBegin(GL TRIANGLES); // (2) Draw Primitives
glVertex2i(6, 5);

glVertex2i(10, 5);

glVertex2i(10, 9);

glEnd();

glEndOcclusionQueryNV();// (3) End Occlusion Query
glGetOcclusionQueryuivNV(occ queries[inner],GL PIXEL COUNT NV,

&pixelCount);// (4) Read back results of Occlusion Query

object into the depth buffer for consequent objects to be checked against. The second

pass is the same, but the order of the objects rendered is reversed. After these two

passes all objects with both the FFV and SFV flags set to true are removed from

the PCS. This process is repeated from multiple views to further reduce the PCS. In

practice we use one to three axis-aligned views.

GPU-based culling operates at the triangle level. It therefore does not require

a hierarchy. GPU-based culling can also cull objects in close proximity as it culls

against individual primitives. GPU-based culling is not without penalties. The GPU-

cull has the overhead of the render calls for all triangles in the scene. Each time the

GPU-cull is called it could render triangles multiple times. Current NVIDIA graphics

17

www.manaraa.com

A

B

Figure 3.7: Depth Complexity View A has a lower depth complexity than View B.

cards can perform 1.3 million occlusion queries per second. This makes the cost of

an occlusion query under a microsecond. This is fast, but it is still a penalty that

must be paid per visibility query. It can also be difficult to determine the best view

direction. Figure 3.7 demonstrates the importance of finding a view with low depth

complexity. If view A is chosen, the depth complexity will be low, and GPU culling

will cull the set to 0 in 1 pass. If view B is chosen, GPU culling will take 8 passes to

cull all triangles.

3.3 Analysis

In this section we analyze collision detection in terms of geometric coherency

of the primitives and geometric proximity of the primitives. These are the two most

important factors in collision detection. This analysis will outline the factors that

go into determining the correct collision detection methods. Section 3.3.1 describes

coherency. Section 3.3.2 describes proximity. Section 3.3.3 outlines our algorithm for

determining the correct collision detection technique based on coherence and proxim-

ity. In Chapter 4 we present our collision detection system and improved version of

18

www.manaraa.com

Rigid Body

Affine Transformations

Deformable models

Edge Connectivity

Deformable

Models

Random Triangle

Movement

Coherent In-Coherent

All new

Geometry

Every Frame

Figure 3.8: Collision Detection Coherency Most collision detection schemes take
advantage of coherency between frames. As Coherency decreases, collision detection
schemes must focus on hierarchy rebuilding, hierarchy updates, and hierarchy-less
collision detection schemes.

GPU culling as the contribution of this thesis.

3.3.1 Geometric Coherency

We use the term ”geometric coherency” to describe the amount of change

that primitives undergo from one frame to the next with respect to the neighboring

primitives. If all the primitives move together, the coherency is high. When triangles

move away from one another the coherency is very low. Figure 3.8 outlines the

different types of model coherency. This scale ranges from extremely coherent to

incoherent. The most coherent are those bodies that do not change from frame to

frame. Models transformed by affine transformations are slightly less coherent. These

groups are rigid bodies and are efficiently handled by rigid body collision detection

techniques. The remaining types of models are all deformable models. The deformable

models group consists of models in which edge connectivity is preserved. The next

group contains deformable models without edge connectivity. The random triangle

movement group contains objects that deform similar to explosion simulations. The

last group contains models where new geometry is created every frame. An example

19

www.manaraa.com

that would fit into this group is the surface of a fluid simulation.

When object deformations are minimal, AABB hierarchies can be updated

and efficient collision culling can be performed. Using hierarchy updates when leaf

nodes of the AABB separate can lead to slow collision detection. Figure 3.9 is a graph

for a simulation where two objects explode into each other. As these objects explode

the AABB nodes stretch to bound primitives that are not in close proximity one to

another. As the simulation progresses, collision detection grows exponentially. This

is similar to the image in Figure 3.2. In the worst case, new geometry is constructed

every frame. In this case there are two options: build a new hierarchy each frame or

use a hierarchy-less technique such as GPU culling.

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Iterations

T
im
e
(s
ec
o
n
d
s)

No Rebuild

Rebuild

Figure 3.9: Random Triangle Movement This graph represents the data for AABB
based collision detection on a data set consisting of triangles moving in random di-
rections. As the triangles at the root level separate, the run time rises exponentially.
The plot represented by the dotted line shows the effects of rebuilding the hierarchy.
On frame 24 the hierarchy is rebuilt and collision detection times become fast again.
The rebuild time was not included in the plot.

20

www.manaraa.com

Figure 3.10: Two Objects Two objects that are not in close proximity one to another.

3.3.2 Geometric Proximity

We can describe both GPU culling and AABB-Hierarchy based collision de-

tection as culling algorithms. It is obvious that the GPU culling algorithm removes

triangles from the set of those that must be tested for collisions. AABB hierarchy

based collision can also be thought of as a culling technique. Every time an AABB

fails an intersection test with another AABB, all of the primitives and AABBs below

that AABB are removed from the set of primitives that must be checked.

AABB based collision detection begins to suffer when objects are in close prox-

imity. Figure 3.10 shows two objects that can be culled at the root level by AABBs.

If these two objects are moved into very close proximity, the AABB culling is less-

ened and many triangle to triangle intersection tests must be performed. Figure 3.11

shows a plot of the number of intersection tests that must be performed as objects

move into close proximity. In this figure the model has many overlapping triangles

and collision detection becomes very difficult.

21

www.manaraa.com

Proximity

T
ri
a
n
g
le
 I
n
te
rs
ec
ti
o
n
s

Figure 3.11: Collision Detection Proximity As Objects come into closer proximity
triangle triangle intersections increase.

3.3.3 Deformable Model Collision Detection Bottlenecks

Table 3.1 outlines the two bottlenecks that limit AABB based collision detec-

tion. These bottlenecks are directly related to the problems discussed in Section 3.3.1

and Section 3.3.2. The primitive intersection bottle neck occurs when objects are in

close proximity one to another. The AABB intersection bottleneck results from a

poorly formed hierarchy. This can happen when AABBs are updated to fit around

triangles and subtrees that are highly deformable.

Table 3.1: AABB Hierarchy Bottlenecks

1. Primitive intersection bottle neck.
a. Optimized GPU cull.
b. hybrid AABB and GPU cull framework.

2. AABB Intersection bottle neck.
a. AABB rebuild in parallel with GPU cull.
b. Hierarchy-less GPU cull.

22

www.manaraa.com

Both of these bottlenecks have solutions. When primitive intersections are

the bottleneck, it can be faster to perform the GPU cull and then rebuild a smaller

hierarchy based on the non-culled subset of the geometry. Another option is to use a

hybrid approach where AABBs are culled with the AABB hierarchy, but primitives

are then culled with the GPU. When the bottleneck is the AABB tests, there are

again two options. The first solution is to rebuild the hierarchy in a thread while

performing GPU based culling in another. The second is to perform hierarchy-less

collision detection by strictly using the GPU. These techniques are addressed in the

following chapter.

23

www.manaraa.com

24

www.manaraa.com

Chapter 4

The Combined AABB and GPU Culling System

4.1 Overview

This chapter explains our combined collision detection system. We first dis-

cuss GPU culling and the three techniques we have developed to optimize the GPU

cull. This is presented in Section 4.2. In Section 4.3, we explain our AABB based

framework and perform an analysis on the needed conditions for it to be beneficial.

Finally, in Section 4.4, we describe the combined AABB and GPU culling system and

give an algorithm for selecting how and when to switch between them as an animation

progresses.

4.2 GPU-based culling

Our GPU culling technique extends the work done in [2], [13], and [14]. Our

work implements these ideas and adds to them metrics that dictate how to use GPU-

based culling. In the following sections we show that GPU culling can be used in

many different ways with different performance implications. After the GPU cull is

finished, an AABB hierarchy must be built to perform the final collision detection.

Because of this, the GPU-based culling technique is a tradeoff between the expensive

AABB hierarchy rebuild of the culled set and the time to cull the set. Throughout

this section we report the time to perform GPU culling as the summation of all the

steps to perform collision detection. This consists of multiple cull passes plus the

time to build a hierarchy and enact the final AABB collision detection. The goal of

this part of the work is to optimize the GPU cull. We do this using three techniques.

25

www.manaraa.com

Figure 4.1: Two Bunnies Colliding A visualization of a data set consisting of two
bunnies overlapping.

1. Determine the view configuration that minimizes the GPU cull time.

2. Sorting the objects to maximize the number of primitives culled.

3. Determining the proper number of triangles to include in each occlusion query.

The following sections discuss our approaches to these optimizations.

4.2.1 Determining The Proper View Configurations

GPU Culling is an O(n) operation where n is the number of primitives in

the scene. Choosing the best view for a given scene will increase culling and, as a

consequence, decrease the number of primitives rendered on consequent cull passes.

Rendering multiple cull passes can become very expensive when culling is not efficient.

Figure 4.2 and Figure 4.4 show the total time needed to perform collision detection

using different cull directions for two data sets. All combinations of axis-aligned view

directions are iterated. Figure 4.2 corresponds to the screen shot in Figure 4.1. In

this scene the depth complexity is very similar for all three views. In such situations

26

www.manaraa.com

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

V
ie
w
 0

V
ie
w
 1

V
ie
w
 2

V
ie
w
s:
 0
, 1

V
ie
w
s:
 1
, 0

V
ie
w
s:
 0
, 2

V
ie
w
s:
 2
, 0

V
ie
w
s:
 1
, 2

V
ie
w
s:
 2
, 1

V
ie
w
s:
 0
, 1
, 2

V
ie
w
s:
 0
, 2
, 1

V
ie
w
s:
 1
, 0
, 2

V
ie
w
s:
 1
, 2
, 0

V
ie
w
s:
 2
, 0
, 1

V
ie
w
s:
 2
, 1
, 0

T
im
e
 (
S
e
c
o
n
d
s)

Figure 4.2: Time For Different View Configurations Times given for different
view configurations of GPU culling for the data set in Figure 4.1. The views are
labelled 0, 1, and 2. These views are axis aligned corresponding to one of the X, Y,
or Z axis, respectively.

it is more important to render from all views than to find the best order. However,

as the graph demonstrates, there is still an optimal ordering of the three view direc-

tions. Figure 4.4 gives the timings for various view configurations for the data set in

Figure 4.3. This data set has a very high depth disparity in the X direction and in

the Y direction. The Z direction has very low depth complexity and is, therefore,

the optimal choice with respect to culling. The configurations that render view Z

first are considerably faster than any others. We can see from Figure 4.2 and 4.4

that choosing the best view direction in many cases will result in a 10 to 100 percent

increase in speed.

Our goal is to find the fastest configuration of views and to detect when differ-

ent view configurations become faster. This requires a balance between exploration

and coherency. If the amount of exploration is too low, our technique becomes stuck

in less-optimal view configurations and more optimal view configurations are never

found. With too much exploration our algorithm would tend towards an average of

27

www.manaraa.com

Figure 4.3: Two Sheets in Close Proximity A visualization of a data set consisting
of two sheets of cloth in close proximity.

all configurations. In order to find the correct balance between exploration and co-

herency, our metrics take into account the percent culled per frame for the three view

configurations and uses a decay principle to keep highly rated views, thus limiting

exploration. Our technique explores one view configuration per frame. The decision

consists of a few multiplies and compares, and is therefore irrelevant to overall time.

Our view configuration technique is outlined in the following sections.

Percent Culled

Our primary indicator of a view direction’s efficiency is the percent culled by

that view. Using the percent culled as the primary indicator guarantees that our

method will perform well when one view direction has a much lower depth disparity.

In most cases the views that cull the best tend to result in the fastest overall frame

time. This seems to be an obvious truth but there are some very rare situations

where it does not hold. This is because of the many factors that go into the GPU

cull. The orthographic projection changes every time the set of objects to be culled

28

www.manaraa.com

0

0.5

1

1.5

2

2.5

V
ie
w
 0

V
ie
w
 1

V
ie
w
 2

V
ie
w
s:
 0
, 1

V
ie
w
s:
 1
, 0

V
ie
w
s:
 0
, 2

V
ie
w
s:
 2
, 0

V
ie
w
s:
 1
, 2

V
ie
w
s:
 2
, 1

V
ie
w
s:
 0
, 1
, 2

V
ie
w
s:
 0
, 2
, 1

V
ie
w
s:
 1
, 0
, 2

V
ie
w
s:
 1
, 2
, 0

V
ie
w
s:
 2
, 0
, 1

V
ie
w
s:
 2
, 1
, 0

T
im
e
 (
S
e
c
o
n
d
s)

Figure 4.4: Time For Different View Configurations. Times given for different
view configurations of GPU culling for the data set in Figure 4.3. The views are
labelled 0, 1, and 2. These views are axis aligned corresponding to the X, Y, or Z
axis, respectively.

changes. It is possible for one view to cull less, but cull the correct triangles that

would cause increased resolution in following cull passes. It is also possible for a

less efficient cull direction to cull triangles that allow for a much more efficient cull

pass from subsequent cull passes. Because these cases are not common our technique

does not directly optimize for them. Instead, our technique is biased towards view

directions that have culled well on previous frames.

Decision Mechanism

In order to perform exploration on every cull pass, we store the percentage

culled for every frame and for every cull pass. This can be represented as a matrix.

The columns represent the cull passes, while the rows represent the view number.

Our selection algorithm iterates over the matrix and picks the highest percent culled

per view for each cull pass.

The view configuration matrix is a three by three matrix. The columns repre-

sent the X, Y , and Z view directions. The rows represent the cull passes. We hard

29

www.manaraa.com

Algorithm 2 View Configuration Matrix Update

(1) The selected views for the 3 iterations are updated with Equation 4.1

(2) View options for cull pass 1 are increased by options for cull pass 2

and cull pass 3

(3) All view options for all iterations decay with Equation 4.2

code to 3 cull passes as this has shown to be a an efficient number. Algorithm 2 gives

the three steps to update the view configuration matrix. We first update the views

chosen for each of the cull passes.

view selected =
view selected + update value ∗ 3

4
(4.1)

The update value is the percentage of the remaining triangles culled. If the set was

completely culled on a previous iteration, then this value defaults to 0. This has a

very heavy weight as the success of the previous frame is a very good indication of

consequent frames. Next, we update the first row with the values of the second and

third rows. In many cases the first cull pass becomes less efficient while the second

and third cull passes become more efficient. Step (2) is an exploration term. When a

cull pass is successful on the second or third pass, Step (2) will update the values for

Cull Pass 1. Finally, each value in the matrix is multiplied by the DECAY RATE

variable.

view = view ∗DECAY RATE (4.2)

Causing the variables to decay helps the efficiency of both Steps (1) and (2). As the

animation progresses, the cull efficiency of a view tends to change. Causing the values

to decay keeps the algorithm from exploring views that are no longer guaranteed to

be efficient.

4.2.2 Object Sort

GPU culling is a rendering-based algorithm. As such, shortcuts are taken to

limit the amount of rendering that must be performed. One optimization entails

storing flags denoting the passes in which objects are visible. For the details of

30

www.manaraa.com

0

1

0

1

0

1

1

0

1

0

1

0

Not Sorted Sorted

Good

Culling

Bad

Culling

Iteration 1 Iteration 1Iteration 2 Iteration 2result result

Depth BufferDepth Buffer

Un-Culled Un-Culled

Figure 4.5: Effect of Sorting Objects before the GPU Cull In the left side of
the figure an unsorted set of objects is culled. On the right side of the figure, the same
set of objects is sorted by the distance from the camera. We show the two iterations
of a GPU cull. First, object 1 is compared against the depth buffer containing object
0. Next, object 1 is culled against the portion of object 0 that remains un-culled.

this algorithm, see Quick-Cullide [14]. Without this optimization, objects must be

rendered four times per GPU Cull. However, the optimization from Quick-Cullide

does not work flawlessly. Figure 4.5 shows an example where the Quick-Cullide

optimization is almost ineffective. In this case, the first iteration does not cull well,

as shown on the left side of Figure 4.5. When the order of the objects is reversed the

cull is much more successful. In this example, two objects are shown. However, this

same problem occurs with any number of unsorted objects.

In our experience, sorting the objects along the camera’s view direction tends

to give good results. As shown on the right side of Figure 4.5, we are able to obtain

significant speedups.

31

www.manaraa.com

Triangle Time

Query Time

M
ic
ro
-S
ec
o
n
d
s

0

0.4

0.6

0.8

1

1.2

1.4

0.2

0 30Triangles Per Query

Figure 4.6: Times to Perform Occlusion Queries This graph shows the time to
perform occlusion queries when multiple triangles are rendered per query. Graph was
plotted with an NVIDIA 6800 graphics cards using the 78.01 driver version. Triangles
are rendered as vertex buffer objects to maintain highest rendering throughput.

4.2.3 Triangles Per Query Determination

We have benchmarked occlusion query performance over a wide range of graph-

ics cards. Our findings show that occlusion query capabilities have increased very little

over the past few years. Current cards can perform about 1.3 million occlusion queries

per second. Occlusion queries were first implemented in commodity hardware with

the NVIDIA Geforce fx series. As newer cards have been introduced, occlusion query

performance has changed very little. Figure 4.6 shows the plots of time taken per

occlusion query as well as per triangle. The plot representing time per query changes

very little as the geometry is increased. The time per triangle decreases exponen-

tially. This shows that a naive implementation of one occlusion query per triangle is

occlusion query bound. In some cases this is still the best course of action becuase

increasing the geometry rendered per occlusion query yields lower culling. However,

as Figure 4.6 shows, significant speedup can be obtained by rendering more than one

triangle per occlusion query.

As with our view determination mechanism, our triangles per query mechanism

relies on exploration and coherence. We store a predicted cull amount for each level

32

www.manaraa.com

of triangles per query. After each cull the predicted cull amount is updated based on

the culling results.

PXcnt =
PXcnt + Xcnt ∗ 3

4
(4.3)

is the update equation. Table 4.1 defines the variables used in this section.

Triangles per query cannot simply be updated based on efficiency in culling.

The most effective GPU cull is almost always based on one triangle per query. How-

ever, using more triangles per query is faster and can sometimes make up for a less

efficient cull. In other words, there is a tradeoff between the amount culled and the

time taken to cull. In

N =
XO

P
+ UR (4.4)

we quantize the total time taken as the time per occlusion query multiplied by the

number of queries divided by the number of triangles per query plus the time to rebuild

the hierarchy as a function of un-culled triangles. The AABB collision detection test

is very fast after the hierarchy is built, making it negligible. We also define the culled

triangles and un-culled triangles in terms of each other in

T = X + U (4.5)

Solving for for U gives us

U = T −X (4.6)

We then substitute this into Equation 4.4 resulting in

N =
XO

P
+ RT −RX (4.7)

We can solve for the number of primitives that must be culled to justify P .

X =
N −RT

O
P
−R

(4.8)

After we have determined how many triangles must be culled for both an

increased and decreased number of triangles per query, we can update our indicator

variables:

X inc fit = PXinc −Xinc (4.9)

33

www.manaraa.com

Table 4.1: Triangles per Occlusion Query Variables
Variable Name Definition

X The number of primitives that must be culled to justify P .
U The number of primitives that will be left un-culled.
T The total number of primitives.
O The cost of an occlusion query.
P The number of triangles rendered per occlusion query.
R The equation representing the rebuild cost.
N Calculated cost of occlusion queries plus rebuild

PX Estimated culling per triangle count.
X inc fit Indicator of performance when triangles per query are increased
X dec fit Indicator of performance when triangles per query are decreased

Algorithm 3 Steps to Calculate Triangles per Occlusion Query

(1) Update predicted X for selected P with Equation 4.3.

(2) Xinc is calculated from Equation 4.8 by substituting P + 1 for P.

(3) Xdec is calculated from Equation 4.8 by substituting P − 1 for P.

(4) X inc fit is calculated with Equation 4.9.

(5) X dec fit is calculated with Equation 4.10.

(6) Increase P if X inc fit > X dec fit and X inc fit > 0.
(7) Decrease P if X dec fit > X inc fit and X dec fit > 0.

and

X dec fit = PXdec −Xdec (4.10)

perform this update. These two variables indicate how many more triangles will be

culled by increasing or decreasing the triangles per query. Algorithm 3 shows the

complete steps our triangle per query mechanism takes.

4.3 A Framework built on GPU and AABB Culling

Figure 4.7 outlines the steps to combine GPU-based culling and AABB-based

culling. The general idea is to perform the AABB cull down to the triangle level

but skip the triangle intersection tests. When a triangle intersection is reached, the

triangle is marked to be tested later with the GPU cull. In the next phase the marked

triangles are culled with the GPU. These results are then percolated up the tree and

final collision detection takes places using the culled tree.

34

www.manaraa.com

A. B.

C. D.

Figure 4.7: AABB GPU-Cull Framework A. AABBs are initially used to cull
down to the Leaf nodes. B. Un-culled triangles are then culled with the GPU. C. The
results of both culls are then percolated back up the tree. D. Final collision then takes
place using the marked tree.

This technique is useful when triangle intersections become the bottleneck.

This can happen in two ways:

1. Objects deform in close proximity one to another with the result being that

many triangles are in very close proximity.

2. Triangle-Triangle intersections speeds are sufficiently slow.

Case 1 can be restated as a problem of run-time complexity. When triangles are

distributed uniformly, a triangle will only be tested against the following: N log N

AABBs, 1 triangle, and possibly a few additional triangles that share edges with

the colliding triangles. When triangles deform by bunching up or overlapping, the

number of triangle intersections becomes much larger. In case 2 above, triangle-

triangle intersection speeds may vary significantly from one architecture to another.

Also, the triangle-triangle intersection test given by Moller [3] is not constant. The

35

www.manaraa.com

Table 4.2: AABB and GPU Cull Framework
Variable Name Definition

A1 Number of Initial AABB to AABB collisions.
A2 Number of Final AABB to AABB collisions.

TRI1 Number of Triangle to triangle collisions after AABB cull.
TRIR Number of Triangles to render for GPU cull after AABB cull.
TRI2 Number of Triangle to triangle collisions after AABB cull and GPU cull.
AI AABB intersection time.
TI Triangle intersection time.
PC Percent of triangles culled.

Pure AABB Time taken to perform AABB collision detection.
Hybrid Time to perform our hybrid approach.

test performs many calculations with increasing complexity to determine if triangles

do not intersect. This causes a large variance in the time per triangle test.

4.3.1 Framework Analysis

In this section we perform analyses of our framework in order to determine

circumstances where our framework is more efficient than a purely AABB based

approach to collision detection. The variables used in this section are defined in

Table 4.2.

Pure AABB = A1 ∗ AI + TRI1 ∗ TI (4.11)

breaks the time to perform AABB based collision up into the AABB intersection cost

and the triangle intersection cost.

Hybrid = A1 ∗ AI + TRIR ∗O + A2 ∗ AI + TRI2 ∗ TI (4.12)

gives the time to perform our hybrid method. TRI1 and TRIR represent the num-

ber of triangles that must be checked for collision detection on the CPU and GPU

respectively. Both methods have the same AABB test denoted by A1 ∗ AI . We set

the previous two equations equal to each other in

TRI1 ∗ TI = TRIR ∗O + A2 ∗ AI + TRI2 ∗ TI (4.13)

36

www.manaraa.com

Table 4.3: Collision Detection Times
Type Time

Triangle Intersection Test 100 nanoseconds
Occlusion Query 1000 nanoseconds

This tells us that the GPU cull plus the un-culled triangle intersections plus the final

AABB test must be smaller than the triangle tests in order for the hybrid method

to be faster. In order to get an upper bound, we drop the final AABB test and final

CPU triangle tests giving us

TRI1 ∗ TI > TRIR ∗O (4.14)

In

TRI1 = O/TI (4.15)

we set TRIR equal to 1, and solve for TRI1. This equation tells us that the ratio of

O/TI is the number of intersections that the CPU-only test would have had to have

performed in order for our hybrid approach to be as fast as a pure CPU approach.

Table 4.3 gives the times for primitive intersections. These timings were benchmarked

on a 1.6Ghz Intel Centrino. These times represent the average time over millions of

tests to ensure accuracy. With an occlusion query time of 1 microsecond and a triangle

intersection test time of 100 nanoseconds there must be 10 times more intersections

than GPU culls. If the GPU is not able to cull all triangles then we must look at the

number of intersections required as a function of percentage culled. We start with

Equation 4.13. We represent TRI2 as a percentage of TRI1. PC is a value between

0 and 1 and represents the percentage of the triangles that were not culled by the

GPU. We drop the final AABB test term A2 in order to show a lower bound. An

alternative would be to bound A2 in terms of tri1 ∗PC . However the correct equation

to do this would be dependant upon the models of the scene and their respective

configurations. This gives us

TRI1 ∗ TI > TRIR ∗O + PC ∗ TRI1 ∗ TI (4.16)

37

www.manaraa.com

0

50

100

150

200

250

0% 25% 50% 100%75%

N
e
e
d
e
d
 I
n
te
rs
e
c
ti
o
n
s

Percent Left Un Culled by GPU

Figure 4.8: Triangle Intersections Needed Triangle intersections needed as a
function of percentage culled by GPU. Equation 4.17 is evaluated as PC goes from 0
percent to 100 percent.

Next, we set TRIR to 1 and solve for TRI1. Our result is

TRI1 =
O

TI − PC ∗ TI

(4.17)

This is still a lower bound as the occlusion query cost would tend to be higher. GPU

culling can require as many as two occlusion queries per Triangle. In Figure 4.8

we iterate from all culled to none culled. The graph shows the number of triangle

intersections that must be culled in order for GPU culling to be faster. As we approach

100 percent un-culled, the number of triangle intersections needed becomes infinite.

In practice we found a few examples where occlusion queries are fast enough

to use our hybrid method. When objects begin deforming and overlapping enough

to create many collisions per triangle, the GPU culling tends to be less efficient.

Equation 4.17 shows that decreasing the time taken to perform occlusion queries

would decrease the number of triangle intersections left un-culled by the AABB cull

pass. For architectures where occlusion queries are as fast or faster than the average

triangle triangle intersection code, this system would be a win. The other option

is to use this only where there are an order of magnitude more triangle - triangle

38

www.manaraa.com

Table 4.4: Decision System Variables
Variable Name Definition

AABBT AABB Collision Detection Time.
GPUT GPU Collision Detection Time.

AABB Rebuild Average Average cost of AABB rebuilds over time.

Table 4.5: Decision System Functions
Function Description

Perform AABB Perform AABB based collision detection.
Perform GPU1 Perform GPU based collision detection with out metrics.
Perform GPU2 Perform GPU based collision detection with metrics.

Mode1 Switch to Mode 1.
Mode2 Switch to Mode 2.

Rebuild In Tread Rebuild AABB hierarchy in a thread.
explore Return probability of Mode 2.

inc explore Increase explore likelihood.
dec explore Decrease explore likelihood.

intersections than triangles. However, this is an unlikely situation.

4.4 Deciding Which Culling to Use

This section outlines how we determine the type of culling to be used. We

describe two different culling modes, labelled Mode 1 and Mode 2. Mode 1 is primarily

an AABB-based technique that uses the GPU during rebuilds. Mode 2 is GPU-

based culling. In cases where the models preserve edge connectivity, and are not

in close proximity, Mode 1 is the fastest technique. When objects become extremely

deformable or in very close proximities, Mode 2 is fastest. We explain the two different

modes, Mode 1 and Mode 2, and then the decision algorithm in the next sections.

Tables 4.4 and 4.5 describe the variables and functions used.

The GPU AABB combined framework could one day be used in place of

Mode 1. This technique has shown to be a very good way of removing the triangles

that are not in close proximity with AABBs, and then culling more of the triangle in

close proximity with the GPU.

39

www.manaraa.com

4.4.1 Mode 1

Algorithm 4 Algorithm for Mode 1.

AABBT = Perform AABB(); // (1) Sample the AABB time.
GPUT = Perform GPU1(); // (2) Sample the GPU time.
while(animation); // (3) Iterate through animation sequence

if (AABBT < GPUT); // (4) AABB time is faster perform AABB based
Perform AABB();

else if (AABBT > GPUT); // (5) GPU cull time is faster rebuild and test.
Rebuild In Tread() AND Perform GPU1();
AABBT = Perform AABB();
GPUT = Perform GPU1();
if (AABBT > GPUT); // (6) If AABB is still faster than GPU move to mode 2

Mode2()
if (AABB Rebuild Average > GPUT); // (7) If AABB average build time is

greater than GPU time, move to mode 2
Mode2()

if (explore()); // (8) use explore function to test Mode 2
Mode2()

Mode 1 is primarily a CPU-based approach. Algorithm 4 gives the algorithm

for Mode 1. We store the time taken to perform AABB based collision detection in

AABBT and the time taken to perform GPU-based, hierarchy-less collision detection

in GPUT . When GPUT becomes larger than AABBT , we rebuild the AABB hierarchy

in a thread and perform GPU based collision detection. After the AABB rebuild

thread has finished, we again time the AABB based collision detection and GPU

based culling. If GPU based culling is still faster, we switch to Mode 2. We also have

a probability based explore function that switches to Mode 2. The rate of exploration

is updated in Mode 2.

Our improved GPU cull is not used in Mode 1. The improved GPU cull is

only useful when it is called enough to offset the cost of exploration.

40

www.manaraa.com

4.4.2 Mode 2

Mode 2 is the improved GPU Cull outlined in Section 4.2. Algorithm 5 gives

the steps performed in Mode 2. As mentioned earlier Mode 2 sets the exploration

probability variable. The exploration variable is only used by Mode 1 to switch to

Mode 2. When the GPU collision detection becomes slower than AABB based, we

decrease exploration probability and return to Mode 1.

Algorithm 5 Algorithm for Mode 2.

while(animation); // (1) Iterate through animation sequence
inc explore ; // (2) Increase exploration.
GPUT = Perform GPU2() ; // (3) Perform GPU based collision detection.
if (AABBT < GPUT); // (4) If AABB time is faster, perform AABB based

dec explore();// (5) Decrease exploration at rate of GPUT / AABBT

Mode1();

4.4.3 System

Our System starts in Mode 1 where both AABB-based and GPU-based col-

lision detection are timed. For slightly deformable models, rigid bodies, and models

that are not in close proximity, the AABB-based timing will be faster. In such cases

our system will continue using Mode 1 unless the probability-based explore function

switches to Mode 2. When Mode 2 is consistently slower than Mode 1 the explore

function is decreased. For those models where the GPU is faster, Mode 2 is used

until the AABB time is faster than the time for GPU based culling. Because the

exploration is initially high, our GPU cull will have a few frames to try different view

configurations, and triangles per query. Allowing Mode 2 to return to Mode 1 helps

on benchmarks like the BART benchmark where the animation is initially incoherent

but becomes more coherent.

In the following chapter, we show results for hierarchy-less collision detection

and our system made up of Mode 1 and Mode 2.

41

www.manaraa.com

42

www.manaraa.com

Chapter 5

Results

The collision-detection system obtains good results on a wide range of models.

Figure 5.3 shows the 5 data sets used to test our system. We refer to these data

sets as A, B, C, D, and E. Data set A is an animation of two bunnies rotating. The

bunnies are both rigid bodies, with affine transformations performed on them. Data

set B is an animation of two pieces of cloth waving, deforming, and rotating. Data

set C is an animation of two sheets deformed by sine waves. The animation rotates

the two sheets of cloth. Data set D is the BART animation from Figure 2.4. Data set

E is an animation of a dragon exploding. We use data sets A, B, and C in Section 5.1

for our timings on hierarchy-less collision detection. These three data sets show the

effects of our three GPU cull optimizations. All data sets are used in Section 5.2 to

give results for our collision detection system.

5.1 Hierarchy-Less Collision Detection

In the next three sections we present the results of sorting, picking the optimal

view configurations and determining the optimal number of triangles per query. We

used the data sets A, B, and C. Figure 5.2, Figure 5.3, and Figure 5.4 follow the

same format. On the left side of the figure are three graphs showing the time taken

for collision detection for each data set (in seconds). Bar graphs on the right of the

figures represent the total cost of the methods for all three data sets. The horizontal

axis represents time. All times are given in seconds.

43

www.manaraa.com

5.1.1 Object Sort

Figure 5.2 shows the results for sorting the objects before rendering them. On

data set A, the sort is only slightly faster. In some cases the sort can even result in a

slow down. Sorting at the primitive level would guarantee an optimal render order,

however, this would be expensive. Set B and C show a 10 and 25 percent increase

respectively. These data sets have a low depth complexity for one view configuration.

This makes sorting very important.

5.1.2 View Configurations

As a baseline, we time three view configurations. The goal of our view con-

figurations mechanism is to be as fast or faster than any other view configuration.

Figure 5.3 shows that our technique is nearly as fast or faster than the best hard

coded view configuration on all three data sets. For data set A, the view configura-

tions do little to impact performance. However, there is still a six percent difference

between different view configurations. On this data set our technique averages out to

be about as fast as the View Z,X,Y. On data set B View Z,X,Y is the best. Therefore,

our technique explores until it finds View Z,X,Y and then continues using it. Data

set C shows our algorithms working optimally. As the animation rotates, different

view configurations become optimal. Our technique moves between these views for a

speedup over all other hard coded views. Finding the correct view in this case can

amount to a three times speedup.

When our sorting technique is coupled with our view configuration mecha-

nism, the two techniques mutually help one another. The sorting mechanism benefits

because the optimal view direction is less prone to noise. The view configuration

mechanism benefits because good views are rated higher.

5.1.3 Triangles Per Occlusion Query

Figure 5.4 gives our results for the triangles per query mechanism. As men-

tioned earlier, GPU based culling can benefit greatly from rendering multiple triangles

per occlusion query. For data set A, the optimal number stays between two and three.

44

www.manaraa.com

Our technique moves between two and three and then eventually settles on two. Data

set B has so many collisions that one triangle per query is optimal. Our technique

finds this and continues with one triangle per query. For data set C, our technique

explores up to 15 triangles per query. However, to make the graph readable only 1,

2, and 3 triangles per query are shown.

5.1.4 Final Results

Figure 5.5 gives our final results for hierarchy-less collision detection. The

different data sets each benefit from different combinations of our three mechanisms.

Data set A benefits most from the sorting and the triangles per query. Data set B

benefits from view selection and sorting. Data set C benefits from all three techniques.

Performance increase varies from 10 percent faster to an order of magnitude faster.

Data set C exemplifies the strengths of our improved GPU cull. The naive

GPU cull consisting of randomly choosing a view configuration, using one triangle

per occlusion query, and not sorting, is slower than AABB based collision detection.

With our approach, data set C shows a large speedup. The triangles in this data

set are in close enough proximity to require many triangle-triangle tests with the

AABB method. With the correct views, triangles per query, and sort, the GPU

based approach is able to cull many triangle-triangle intersections.

5.2 Combined GPU and AABB System

Our system couples our GPU collision detection with AABBs. In order to be

successful, our technique must sample between Mode 1 and Mode 2 frequently enough

to change when one technique becomes faster. However, over-sampling tends towards

an average of the two modes. Mode 1 performs optimally on slightly deforming models

and rigid body collision detection. Mode 2 performs best on objects that are either in

very close proximity one to another, or in which constant rebuilding becomes slower

than performing hierarchy-less collision detection.

45

www.manaraa.com

5.2.1 Data Set Results

In the following sections we give results and explanations for our method,

AABBs, and a naive GPU only technique. Our AABB based technique rebuilds

after the collision detection time becomes more expensive than three fourths of a

rebuild. This is not always the fastest approach to rebuilding, but determining when

to perform a rebuild is an open-ended problem.

Data Set A

Data set A, represented by Figure 5.6, is a rigid body simulation. Throughout

the simulation none of the objects come into close enough proximity to warrant the

switch to Mode 2. This animation quickly finds Mode 1. The spikes in the graph

represent unsuccessful exploration into Mode 2.

Data Set B

Figure 5.7 represents two sheets deforming into each other. This is another

technique where Mode 1 is fastest throughout. This is because of the large number of

collisions. The triangles that the GPU is unable to cull must be built into a hierarchy

and tested.

Data Set C

Figure 5.8 gives the results for data set C. For this data set, GPU-based culling

is the fastest approach. During the first few iterations, the animation moves between

Mode 1 and Mode 2. Once the appropriate views and triangles per query are found,

Mode 2 is considerably faster. The spikes in the graph represent places where Mode 2

becomes slower. As the GPU cull mechanisms find new view configurations, the

system becomes more confident in Mode 2.

Data Set D

In previous sections we mentioned the BART benchmark as a very difficult

case to handle. Figure 2.4 shows the animations of data set D. During the first half

46

www.manaraa.com

of the animation, the triangles move in a random fashion. During the last half, most

of the edge connectivity is preserved. Figure 5.9 shows our results on this data set.

During the first half of the animation, frames must be rebuilt often. The cost of

rebuilds is still too low to warrant Mode 2. In the more coherent second half of the

animation, the hierarchy does not need to be rebuilt as often.

Data Set E

Data set E is an example of an object deforming too fast for a hierarchy to be

rebuilt. We created four scenarios for this object. The timing results of these four

scenarios are shown in Figures 5.10 through 5.13. In each successive figure, the models

deform more slowly. In the first scenario shown in Figure 5.10 Mode 2 is fastest. This

is due to the expensive and frequent rebuild costs. In the next two scenarios, shown

in Figures 5.11 and 5.12, Mode 2 is initially optimal, but as the sequence progress,

Mode 1 becomes faster. In the final scenario, shown in Figure 5.13, Mode 1 is fastest

throughout.

47

www.manaraa.com

Figure 5.1: Visualization of Data Sets This figure is a rendering of the data sets
used.

48

www.manaraa.com

0

0.05

0.1

0.15

0.2

0.25

1
2.5

90 180 270 360

0

0.5

1

1.5

2

1 90 180 270 360

A)

B)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 90 180 270 360

C)

SortedUnsorted

0

10

20

30

40

50

0

50

100

150

200

250

300

0

20

40

60

80

100

120

Figure 5.2: Results for Sorting Objects This graph shows sorted and unsorted
results. This graph shows that sorting is almost always faster.

49

www.manaraa.com

0

0.05

0.1

0.15

0.2

0.25

0.3

Views: X, Z, Y Views: Y, X, Z Views: Z, X, Y VS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0

20

40

60

80

100

0

200

400

600

800

1000

a

0

100

200

300

400

500

A)

B)

C)

Figure 5.3: View Configuration Results This graph shows 4 different view config-
urations. the first three are different combinations of the the axis aligned views X, Y,
and Z. VS represent our view selection technique.

50

www.manaraa.com

0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

1 2 3 S

A)

B)

C)

0

20

40

60

80

100

120

140

0
200
400

600
800
1000
1200

1400
1600

0

50

100

150

200

250

Figure 5.4: Results of Triangles Per Occlusion Query This graph shows the
overall collision detection time for 1, 2, and 3 triangles per query. Our technique is
denoted with the letter S.

51

www.manaraa.com

0

0.05

0.1

0.15

0.2

0.25

0

20

40

60

80

100

120

140

0

0.5

1

1.5

2

2.5

0

200

400

600

800

1000

0

0.5

1

1.5

0

100

200

300

400

500

600

Traditional Our Approach

Figure 5.5: Final Hierarchy-less Results This graph shows our final results against
a naive GPU cull.

52

www.manaraa.com

0

20

40

60

80

100

120

140

160

0

0.1

0.2

0.3

0.4

0.5

0.6

Our Technique

AABB

GPU

Figure 5.6: Results for Data Set A, Two Bunnies

0

0.5

1

1.5

2

2.5

0

200

400

600

800

1000

Our Technique

AABB

GPU

Figure 5.7: Results for Data Set B, Two Waving Sheets

53

www.manaraa.com

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

100

200

300

400

500

600

Our Technique

AABB

GPU

Figure 5.8: Results for Data Set C, Sin Wave Sheets

0

1

2

3

4

5

0

5

10

15

20

25

30

35

40

Our Technique

AABB

GPU

Figure 5.9: Results for Data Set D, BART Animation

54

www.manaraa.com

0

1

2

3

4

5

0

5

10

15

20

25

30

35

40

45

Our Technique

AABB

GPU

Figure 5.10: Results for Data Set E, Exploding dragons, Over 25 Frames
The animation is simulated with a step size of 8 over 25 frames.

0

1

2

3

4

5

0

10

20

30

40

50

60

Our Technique

AABB

GPU

Figure 5.11: Results for Data Set E, Exploding dragons, Over 50 Frames
The animation is simulated with a step size of 4 over 50 frames.

55

www.manaraa.com

0

1

2

3

4

5

0

20

40

60

80

100

Our Technique

AABB

GPU

Figure 5.12: Results for Data Set E, Exploding dragons, Over 100 Frames
The animation is simulated with a step size of 2 over 100 frames.

0

1

2

3

4

5

0

20

40

60

80

100

120

140

160

180

Our Technique

AABB

GPU

Figure 5.13: Results for Data Set E, Exploding dragons, Over 200 Frames
The animation is simulated with a step size of 1 over 200 frames.

56

www.manaraa.com

Chapter 6

Conclusions

We have created a system for performing collision detection on deformable

models. This system is built upon AABBs and GPU-based culling. Our system

switches between AABBs and GPU-based culling using timing and coherency met-

rics. For systems where AABB-based collision detection is the optimal solution we

perform GPU-based culling in parallel with hierarchy rebuilds. The rate of rebuild

is determined by comparing GPU-based culling timings and AABB timings. When

our system finds a scenario that is best handled by GPU culling, our advanced GPU

culling technique is invoked.

Our GPU Culling is an extension of current GPU culling systems. Our system

determines view direction orderings by rating views based on culling efficiency and

coherency. Our algorithm also sorts the objects. Finally our GPU cull calculates the

number of triangles to render using coherency based metrics that predict the collision

detection time for either increasing or decreasing the number of triangles per query.

Our system performs well on many different types of deformable models and

handles rigid bodies well. By switching between Mode 1 and Mode 2 we are able

to choose the best technique based on past experience. The cost of exploration is

distributed across the entire simulation and becomes transparent.

Our results show that GPU culling on current hardware is most useful in

two cases. The first case is when objects deform so fast that the time to rebuild the

hierarchy over the frames becomes very large. The second case is that in which nearly

all triangles are in close proximity, with few actual collisions. Using our form of GPU

based culling, the highest-rated view directions, sorting, and triangles per query are

57

www.manaraa.com

computed. This can result in an order of magnitude speedup in some cases.

In some simulations models deform enough to warrant hierarchy rebuilds but

do not warrant switching entirely to GPU culling. In this case our technique rebuilds

the hierarchy in a thread while performing GPU based culling in the foreground.

Our techniques and equations for determining when a combined approach can

be faster than AABB based culling alone could be used as a guideline by Independent

Hardware Vendor (IHV)s to set and achieve occlusion query throughput goals.

58

www.manaraa.com

Bibliography

[1] T. Larsson and T. Akenine-Mller, “Strategies for bounding volume hierarchy

updates for ray tracing of deformable models,” Tech. Report. [Online]. Available:

citeseer.ist.psu.edu/larsson03strategies.html

[2] N. Govindaraju, S. Redon, M. Lin, and D. Manocha, “CULLIDE: Interactive

collision detection between complex models in large environments using graph-

ics hardware,” Proc. of ACM SIGGRAPH/Eurographics Workshop on Graphics

Hardware, pp. 25–32, 2003.

[3] T. Moller, “A fast triangle-triangle intersection test,” JGTOOLS:

Journal of Graphics Tools, vol. 2, 1997. [Online]. Available: cite-

seer.ist.psu.edu/moller97fast.html

[4] J. F. Alejandro Garcia-Alonso, Nicols Serrano, “Solving the collision detection

problem,” IEEE Computer Graphics and Applications, vol. 14, no. 3, pp. 21–36,

5 1994.

[5] S. G. M.C. Lin, “Collision detection between geometric models: A survey,”

Proceedings of IMA, Conference of Mathematics of Surfaces, pp. 602–608, 1998.

[Online]. Available: citeseer.ist.psu.edu/lin98collision.html

[6] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan,

“Efficient collision detection using bounding volume hierarchies of k-DOPs,”

IEEE Transactions on Visualization and Computer Graphics, vol. 4, no. 1, pp.

21–36, 1998. [Online]. Available: citeseer.ist.psu.edu/klosowski96efficient.html

59

www.manaraa.com

[7] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi, “I-collide: An in-

teractive and exact collision detection system for large-scale environments,” in

Proc. ACM Interactive 3D Graphics Conf., 1995, pp. 189–196.

[8] P. Jimnez, F. Thomas, and C. Torras, “3D Collision Detection: A Survey,”

Computers and Graphics, vol. 25, no. 2, pp. 269–285, Apr. 2001. [Online].

Available: citeseer.ist.psu.edu/431815.html

[9] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierarchical

structure for rapid interference detection,” Computer Graphics, vol. 30,

no. Annual Conference Series, pp. 171–180, 1996. [Online]. Available:

citeseer.ist.psu.edu/gottschalk96obbtree.html

[10] G. van den Bergen, “Efficient collision detection of complex deformable models

using AABB trees,” Journal of Graphics Tools: JGT, vol. 2, no. 4, pp. 1–14,

1997. [Online]. Available: citeseer.ist.psu.edu/vandenbergen98efficient.html

[11] T. Larsson and T. Akenine-Mller, “Collision detection for continuously

deforming bodies,” Eurographics, pp. 325–333, 2001, 2001. [Online]. Available:

citeseer.ist.psu.edu/larsson01collision.html

[12] D. JAMES and D. PAI, “Bd-tree: Output-sensitive collision detection for reduced

deformable models,” ACM Transactions on Graphics (SIGGRAPH 2004), vol. 23,

pp. 393–398, Aug 2004. [Online]. Available: citeseer.ist.psu.edu/656788.html

[13] N. Govindaraju, M. Lin, and D. Manocha, “Quick-cullide: Fast inter- and intra-

object collision culling using graphics hardware,” Proceedings of IEEE Virtual

Reality Conference, pp. 59 – 66, 319, 2005.

[14] ——, “Fast and reliable collision culling using graphics hardware,” IEEE Trans-

actions on Visualization and Computer Graphics, vol. 12, no. 2, pp. 143–154,

Mar/Apr, 2006.

[15] S. Aharon and C. Lenglet, “Collision detection algorithm for deformable

objects using opengl,” in Proceedings of the 5th International Conference on

60

www.manaraa.com

Medical Image Computing and Computer-Assisted Intervention-Part II, 2002,

pp. 211–218. [Online]. Available: citeseer.ist.psu.edu/aharon02collision.html

[16] F. Ganovelli, J. Dingliana, and C. O’Sullivan, “Buckettree: Improving

collision detection between deformable objects,” in Spring Conference in

Computer Graphics (SCCG2000), 2000, pp. 156–163. [Online]. Available:

citeseer.ist.psu.edu/ganovelli00buckettree.html

[17] W. S. W. George Baciu, “Image-based techniques in a hybrid collision detector,”

IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 2, pp.

254–271, Apr-Jun 2003.

[18] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M.Gross,

“Optimized spatial hashing for collision detection of deformable objects,”

Proceedings of Vision, Modeling, Visualization VMV’03, pp. 47–54, 2003.

[Online]. Available: citeseer.ist.psu.edu/teschner03optimized.html

[19] A. Smith, Y. Kitamura, H. Takemura, and F. Kishino, “A simple and efficient

method for accurate collision detection among deformable objects in arbitrary

motion,” Proc. of the IEEE Virtual Reality Annual International Symposium,

pp. 136–145, 1995. [Online]. Available: citeseer.ist.psu.edu/smith95simple.html

[20] K. E. H. III, A. Zaferakis, M. C. Lin, and D. Manocha, “Fast

and simple 2d geometric proximity queries using graphics hardware,” in

Symposium on Interactive 3D Graphics, 2001, pp. 145–148. [Online]. Available:

citeseer.ist.psu.edu/hoff01fast.html

[21] C. W., W. H., Z. H., B. H., and P. Q., “Interactive collision detection for complex

and deformable models using programmable graphics hardware,” in Proceedings

of the ACM symposium on Virtual reality software and technology, 2004, pp.

10–15.

61

